NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Master of Technology VLSI Design First Year

(Effective from the Session: 2022-24)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology VLSI Design EVALUATION SCHEME SEMESTER-I

SI. No	Subject	Subject	Pe	eriod	ls	Evaluation S		Evaluation Schemes		End Semester		Tota	Credit
•	Codes	Subject	L	Т	Р	СТ	ТА	TOTAL	P S	ТЕ	PE	1	
1	AMTVL010 1	CMOS Digital VLSI Design	3	0	0	20	10	30		70		100	3
2	AMTVL010 2	Advanced Digital Design using Verilog	3	0	0	20	10	30		70		100	3
3	AMTCC010 1	Research Process and Methodology	3	0	0	20	10	30		70		100	3
5		Departmental Elective-I	3	0	0	20	10	30		70		100	3
6		Departmental Elective-II	3	0	0	20	10	30		70		100	3
7	AMTVL015 1	CMOS Digital VLSI Design Lab	0	0	4				20		30	50	2
8	AMTVL015 2	Advanced Digital Design Lab using Verilog	0	0	4				20		30	50	2
		TOTAL										600	19

Departmental Elective-I:

- 1. AMTVL0111 Microelectronics
- 2. AMTVL0112 MOS Device Modeling
- 3. AMTVL0113 Analog IC Design

Departmental Elective-II:

- 1. AMTVL0114 Microchip Fabrication Technology
- 2. AMTVL0115 Clean Room Technology and Maintenance
- 3. AMTVL0116 ULSI Technology

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology VLSI Design EVALUATION SCHEME SEMESTER-II

SI.	Subject	ct Subject		Periods		Evaluation Schemes				End Semester		Tot	Credi
No	Codes	Subject	L	Т	Р	C T	ТА	TOTAL	PS	TE	PE	al t 100 3 100 3 100 3 100 3 100 3 100 3 100 3	t
1	AMTVL02 01	Digital Design Using FPGA and CPLD	3	0	0	20	10	30		70		100	3
2	AMTVL02 02	Low Power VLSI Design	3	0	0	20	10	30		70		100	3
3		Departmental Elective-III	3	0	0	20	10	30		70		100	3
4		Departmental Elective-IV	3	0	0	20	10	30		70		100	3
5		Departmental Elective-V	3	0	0	20	10	30		70		100	3
6	AMTVL02 51	Digital Design Using FPGA and CPLD Lab	0	0	4				20		30	50	2
7	AMTVL02 52	Low Power VLSI Design Lab	0	0	4				20		30	50	2
8	AMTVL02 53	Seminar-I	0	0	2				50			50	1
		TOTAL										650	20

Departmental Elective-III:

- 1. AMTVL0211 VLSI Testing and Testability
- 2. AMTVL0212 VLSI DSP Architectures
- 3. AMTVL0213 Full Custom Design

Departmental Elective-IV:

- 1. AMTVL0214 MEMS Sensor Design
- 2. AMTVL0215 Nanoscale Devices: Modeling & Simulation
- 3. AMTVL0216 Physical Design & Automation

Departmental Elective-V:

- 1. AMTVL0217 Embedded Microcontrollers
- 2. AMTVL0218 Real Time Operating System
- 3. AMTVL0219 SOC Design using ARM

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

M. TECH FIRST YEAR					
AMTVL0101	LTP	Credit			
CMOS Digital VLSI Design	3 0 0	03			
ive:					
To explain basics of MOS switch, MOS fabrication and					
their characteristics.					
To explain basic concept of CMOS inverter operation, its					
•					
6					
	10 h a sur				
	, latenup,	9hours			
	1 1				
	inverter u	csign with			
		8hours			
CIRCUITS		onours			
OS Logic Circuits: MOS logic circuits with NMOS loa	ds, Comp	lex Logic			
Realizing Boolean expressions using NMOS gates and CM		, AOI and			
OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates,					
full adder, CMOS transmission gates, Designing with Trans	smission g	ates,			
Logic Circuits: Behavior of bi-stable elements, D latch, SR					
Logic Circuits: Behavior of bi-stable elements, D latch, SR lits, CMOS, and edge triggered flip-flop. DYNAMIC LOGIC CIRCUITS	Latch, Clo	cked latch 9hours			
Logic Circuits: Behavior of bi-stable elements, D latch, SR list, CMOS, and edge triggered flip-flop.	Latch, Clo	cked latch 9hours nchronous			
	ive: To explain basics of MOS switch, MOS fabrication and their characteristics. To explain basic concept of CMOS inverter operation, its characteristics and switching power dissipation. To design static CMOS combinational and sequential logic at the transistor level, including mask layout. To explain the concept of dynamic logic circuits. To design functional units including ROMs, SRAMs, and DRAM. Basics of CMOS. Course Contents / Syllabus MOS TRANSISTOR BASIC Basic, MOS switch, VLSI Design flow & Y-Chart, Basic ond order effect, Fabrication Process Flow: Basic Steps, Design Rules, MOS inverters: DC transfer characteristics CMOS INVERTER Circuit operation, DC transfer characteristics, noise margin: a of CMOS inverter, Supply voltage scaling, power and eristic: Delay time definition, calculation of delay times, Switching Power dissipation of CMOS inverter. COMBINATIONAL & SEQUENTIAL MOS LOGIC CIRCUITS OS Logic Circuits: MOS logic circuits with NMOS loa	ive: Ive item To explain basics of MOS switch, MOS fabrication and their characteristics. Ive item To explain basic concept of CMOS inverter operation, its characteristics and switching power dissipation. Ive item To design static CMOS combinational and sequential logic at the transistor level, including mask layout. Ive item To explain the concept of dynamic logic circuits. Ive item To design functional units including ROMs, SRAMs, and DRAM. Basics of CMOS. Basics of CMOS. Ive item Course Contents / Syllabus MOS TRANSISTOR BASIC Basic, MOS switch, VLSI Design flow & Y-Chart, Basic MOS Devord order effect, Fabrication Process Flow: Basic Steps, The CMO Design Rules, MOS inverters: DC transfer characteristics, latchup, CMOS INVERTER Ive item definition, calculation of delay times, inverter definition, calculation of delay times, inverter definition, calculation of delay times, inverter definition of CMOS inverter. COMBINATIONAL & SEQUENTIAL MOS LOGIC CIRCUITS OS Logic Circuits: MOS logic circuits with NMOS loads, Comp			

UNIT-V	SEMICONDUCTOR MEMORIES	8 hours			
currents in DRA	Memories: Types, RAM array organization, DRAM – Types, AM cell and refresh operation, SRAM operation Leakage curr NOR flash and NAND flash				
Course Outcome: After successful completion of this course students will be able to					
CO 1	To identify the fabrication process of CMOS transistor.				
CO 2	To identify basic concept of CMOS inverter operation, its characteristics and switching power dissipation.				
CO 3	Design combinational & Sequential MOS logic circuits like latches and flip flops.				
CO 4	Explain and design synchronous dynamic pass transistor circuits				
CO 5	Analyse SRAM cell and memory arrays.				
Text Books					
1. Sung-Mo Ka MGH, Third Ed	ng & Yusuf Leblebici, CMOS Digital Integrated Circuits - A ., 2003	Analysis & Design, ,			
2. Jan M Raba Edition, 2005	ey, Digital Integrated Circuits - A Design Perspective, Pr	entice Hall, Second			
	odges, Horace G. Jackson, and Resve A. Saleh, Analysis an hits, Third Edition, McGraw-Hill, 2004	d Design of Digital			
Reference Books					
1 R I Baker H W Li and D E Boyce CMOS circuit design layout and simulation Wiley-					

1. R. J. Baker, H. W. Li, and D. E. Boyce, CMOS circuit design, layout, and simulation, Wiley-IEEE Press, 2007

2. Christopher Saint and Judy Saint, IC layout basics: A practical guide, McGraw-Hill Professional, 2001

	M. TECH FIRST YEAR					
Course Code	AMTVL0102	LT	Р	Credit		
Course Title	Advanced Digital Design using Verilog	3 0	0	03		
Course Object	ive:					
1	Study and explain the basic concepts Verilog HD	L.				
2	Implement digital circuits using distinct design sty	yles.				
3	Design and synthesis digital circuits using HDLs.					
4	Study the concepts of data path design and switch	level				
	modeling.					
5	Explain about pipelining and processor design.					
Pre-requisites:	Digital System Design					
	Course Contents / Syllabus	DIDT				
UNIT-I	INTRODUCTION TO HARDWARE DESC LANGUAGE (HDL)	ION	8 hours			
Introduction to be	rdware description language (HDL), Verilog langua	age and	1 date	a types		
operators, Data ty	anguage features, elements of Verilog, Top-Dov pes in Verilog; net type, reg type, wire type, Veril delays and simulation, inertial delay effects and pu	log Mo	odels	of propagation delay		
UNIT-II	DISTINCT DESIGN STYLES			8 hours		
flow level, proce	on styles, behavioral and structural design style, Ve dural assignment, blocking / non-blocking assign a, writing Verilog test benches.					
	SEQUENTIAL LOGIC					
	esis - technology-independent design, styles for synthesis of finite state machines, synthesis of gat ures.					
UNIT-IV	DATA PATH AND CONTROLLER DESIGN			8 hours		
U U	tate machines, Data-path and Controller Design, S	synthes	sizabl	e Verilog, Modeling		
	g register banks, Switch level modeling.			01		
UNIT-V	PIPELINING AND PROCESSOR DESIGN		<u> </u>	8 hours		
	concepts, Pipeline modeling, Pipeline implement	itation	of a	a processor, Verilog		
modeling of the pr	me: After successful completion of this completion of the second	nurso	stu.	lants will be able		
to	ne. Anter succession completion of this co	JUI 3C	รเนเ			
CO 1	Outline the basic concepts Verilog HDL.					
CO 2	Design of digital circuits using distinct design styles.					
CO 3	Model HDL based Synthesis of digital circuits.	el HDL based Synthesis of digital circuits.				
CO 4	Analyze the concepts of data path design and swit modeling.	of data path design and switch level				
CO 5	Implement pipelining and processor design using Verilog					

Navabi 7 1999 Verilog digital system design McGraw-Hill	Text books					
Travaol, Z., 1777. Verhög digital System design. MeOraw-Inn.	1. Navabi, Z., 1999. Verilog digital system design. McGraw-Hill.					
2. Palnitkar, S., 2003. Verilog HDL: a guide to digital design and synthesis (Vol. 1). Prentice Hall						
rofessional.						
3. Arnold, M.G., 1998. Verilog digital computer design: Algorithms into hardware. Prentice-Hall,						
ю.						
Reference Books						
Lin, M.B., 2008. Digital system designs and practices: using Verile	og HDL and FPGAs. Wiley					
Publishing.						
2. Unsalan, C. and Tar, B., 2017. Digital system design with FPGA: implementation using Verilog						
and VHDL. McGraw-H						

Link:	
Unit 1	https://www.youtube.com/watch?v=wiNDn19GpRU&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=3
Unit 2	https://www.youtube.com/watch?v=xWimKdisUXE&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=12
Unit 3	https://www.youtube.com/watch?v=lpS3S2gVoB4&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=23
Unit 4	https://www.youtube.com/watch?v=cIDoJtYdDVA&t=66s
Unit 5	https://www.youtube.com/watch?v=w1u338oIeTQ

		M. TECH FIRST YEAR				
Course Co	de	AMTCC0101 L	LTP	Credit		
Course Tit	le	Research Process & Methodology3	00	03		
Course Ob	ject	tive:				
1	То	explain the concept / fundamentals of research and their types				
2	То	study the methods of research design and steps of research proces	S			
3	3 To explain the methods of data collection and procedure of sampling techniques					
4		analyze the data, apply the statistical techniques and understan acept of hypothesis testing	d the			
5		study the types of research report and technical writing.				
Pre-requisi		Basics of Statistics				
		Course Contents / Syllabus				
UNIT-I		INTRODUCTION TO RESEARCH		8 hours		
Research met UNIT-II Research pro	hod: cess	ied vs. Fundamental, Quantitative vs. Qualitative, Conceptu s versus Methodology, significance of research, criteria of good re RESEARCH FORMULATION AND DESIGN and steps involved, Definition and necessity of research probler rature review, Locating relevant literature, Reliability of a source	esearch n. Imp	n. 8 hours oortance and		
and identifyin design.		he research problem, Literature Survey, Research Design, Me		of research		
UNIT-III		DATA COLLECTION		8 hours		
primary and s	seco	Data, accepts of method validation, Methods of Data Collect ndary data, sampling, need of sampling, sampling theory and Te different types of sample designs, ethical considerations in research	chniq			
UNIT-IV		DATA ANALYSIS		8 hours		
appropriate s statistical int	tatis ferei	ations, Data analysis, Types of analysis, Statistical techniques stical technique, Hypothesis Testing, Data processing software nce, Chi-Square Test, Analysis of variance(ANOVA) and Ionitoring Research Experiments ,hands-on with LaTeX. TECHNICAL WRITING AND REPORTING OF RESEAR	(e.g. covar	SPSS etc.),		
	-26-2	rch report: Dissertation and Thesis, research paper, revie				
communication Indexing, Indexing-SCI/S their ranking, right, royalty	on, c ci SCIE plag , tra	conference presentation etc., Referencing and referencing styles, latation of Journals and Impact factor, E/ESCI/SCOPUS/DBLP/Google Scholar/UGC-CARE etc. Significance jarism, IPR- intellectual property rights and patent law, common ade related aspects of intellectual property rights (TRIPS); sch and design of research paper, reproducibility and accountability.	Resear T of cor ercializ	ch Journals, ypes of nferences and zation, copy		

CO 1	Explain concept / fundamentals for different types of research	
CO 2	Apply relevant research Design technique	
CO 3	Use appropriate Data Collection technique	
CO 4	Evaluate statistical analysis which includes various parametric test and non-parametric test and ANOVA technique	
CO 5	Prepare research report and Publish ethically.	

Text books

- **1.** C. R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques , New Age International publishers, Third Edition.
- 2. Ranjit Kumar, Research Methodology: A Step-by-Step Guide for Beginners, 2nd Edition, SAGE 2005.
- 3. Deepak Chawla, NeenaSondhi, Research Methodology, Vikas Publication

Reference Books

1. Donald Cooper & Pamela Schindler, Business Research Methods, TMGH, 9th edition

2. Creswell, John W. ,Research design: Qualitative, quantitative, and mixed methods approaches sage publications,2013

NPTEL/ You tube/ Faculty Video Link:

https://www.youtube.com/playlist?list=PL6G1C6j0WUTXqXL9O0CgTXCr1hL8HR2dY https://www.youtube.com/playlist?list=PLVok63jpnHrFFQI6BqkIksVqDnYG0ZI41 https://www.youtube.com/playlist?list=PLnbm2MNkZYwOVVedGBQtID-jKgj9dD8kW https://www.youtube.com/playlist?list=PLPjSqITyvDeWBBaFUbkLDJ0egyEYuNeR1 https://www.youtube.com/playlist?list=PLdj5pVg1kHiOypKNUmO0NKOfvoIThAv4N

		M. TECH FIRST YEAR				
Course C	Code	AMTVL0151	LTP	Credit		
Course T	itle	CMOS Digital VLSI Design Lab	0 0 4	02		
		List of Experiment		•		
Sr. No.	Nan	ne of Experiment				
1	Stud	y of Microwind software and its features.				
2	Desi	gn, simulate and verify the stick diagram of CMOS Inverter us	ing Microv	vind.		
3		gn, simulate and verify the result of universal gates using Micro NAND (b) NOR	owind			
4	Desi	gn, simulate and verify theresult of following gates using Micro KOR (b) XNOR	owind			
5	Y=((gn, simulate and verify the operation of logic function $(B+CD)(E+F)$)'				
6		gn, simulate and verify the operation of CMOS half adder using	-			
7		Design, simulate and verify the operation of CMOS full adder using two half adders in Microwind.				
8	Design, simulate and verify the operation of 4:1 Multiplexer in Microwind.					
9		Design, simulate and verify the operation of logic function using Dynamic and Domino logic in Microwind: $Y = ((\mathbf{B} + \mathbf{C} \mathbf{D})(\mathbf{E} + \mathbf{F}))'$				
10	Desi	gn, simulate and verify pseudo NMOS Inverter.				
Lab Cou	irse O	Dutcome: After completion of this course students will be a	ble to			
CO 1		yze the features of Microwind software.				
CO 2	Desi	gn, simulate and verify the result of universal gates, XOR, XN	OR.			
CO 3	Desi	gn, simulate and verify the operation of logic function using M	icrowind.			
CO 4	Desi	gn, simulate and verify the operation of CMOS half/full adder	using Micr	owind.		
CO 5	Desi	gn, simulate and verify the operation of Multiplexer in Microw	ind.			
Link:						
-	•	utube.com/watch?v=F-8_caipPsY				
https://www	w.youti	ube.com/watch?v=S1VOEqApQvA				
https://www.youtube.com/watch?v=EHUJda2ttU8						
https://www	w.youti	ube.com/watch?v=yHJmFuexWbM				
https://www	w.youti	ube.com/watch?v=7K_0I6CjBOY				

	M. TECH FIRST YEAR					
Course Code	AMTVL0152	L T P	Credit			
Course Title	Advanced Digital Design Lab using Verilog	0 0 4	02			
0	d Functional Simulation of the following digital circu elSim tools) using Verilog Hardware Description Lar		inx/			
Sr. No.	Name of Experiment					
1	Design and simulate the Verilog HDL code to describe	the functio	ns of a Full			
	Adder and Subtractor using three modeling styles.					
2	Design and simulate the Verilog HDL code for the	following				
	combinational circuits:					
	a) 4x1 Multiplexer using gate level modeling	-				
	b) 8x1 Multiplexer using dataflow level mod					
	c) 4-Bit Binary to Gray Code Converter usin	g structural				
3	modeling	arring agent	instignal			
3	Design and simulate the Verilog HDL code for the foll circuit:	owing com	manonai			
	a) 3 to 8 Decoder					
	b) 8 to 3 Encoder					
4	Design and simulate the Verilog HDL code	for the	following			
	combinational circuits using structural modeling.		iono (i ing			
	a) 16x1 Multiplexer using 4x1 Mux					
	b) 4- Bit Comparator using 1 Bit Comparat	or				
5	Design and simulate the Verilog HDL code for the		netic and			
	bitwise logical operations of ALU.					
6	Design and simulate the Verilog HDL code for the flip	p-flops:				
	a) SR FF					
	b) JK FF					
	c) D FF					
	d) T FF					
7	Design and simulate the Verilog HDL code for the fol	lowing cour	nters:			
	a) 4- Bit Up-Down Counter	1				
8	b) BCD counter (Synchronous reset and asy		· · · · · · · · · · · · · · · · · · ·			
0	Design and simulate the Verilog HDL code for the	following 2	- Bit Shift			
	register:					
	a) SISO b) SIPO					
	c) PIPO					
	d) PISO					
9	Design and simulate the Verilog HDL code for 4- Bit u	niversal shi	ft register.			
10	Design and simulate the Verilog HDL code to detect the					
Lab Course	Outcome: After completion of this course students a					
CO 1	Translate the digital design into the Verilog HDL.					
CO 2	Design the combinational circuits in Verilog HDL.					
CO 3	Design the sequential circuits in Verilog HDL.					

CO 4	Implement different digital circuits with component testing.
Link:	
Unit 1	https://www.youtube.com/watch?v=wiNDn19GpRU&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=3
Unit 2	https://www.youtube.com/watch?v=xWimKdisUXE&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=12
Unit 3	https://www.youtube.com/watch?v=lpS3S2gVoB4&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=23
Unit 4	https://www.youtube.com/watch?v=cIDoJtYdDVA&t=66s
Unit 5	https://www.youtube.com/watch?v=w1u338oIeTQ

		M. TECH FIRST YEAR		
Course C	ode	AMTVL0111	LTP	Credit
Course T	itle	Microelectronics	300	03
Course O	bject	tive:		
	-	ovide the knowledge of different fabrication proc y, oxidation and their applications.	esses like	
	types	ovide the knowledge of diffusion, ion implantation and of lithography and etching.		
		ovide the knowledge of Discrete devices and its fabricat		
	To pro circuit	ovide the knowledge of Different digital logic circuits a s.	nd analog	
5	To pro	ovide the basic knowledge of BiCMOS ICs and their pa	ckaging.	
Pre-requi	isites	Basics of digital electronics, CMOS designing.		
		Course Contents / Syllabus		
UNIT-I		FABRICATION PROCESS	8 h	ours
epitaxy, Oxidatio	Silico on & I	axy, Vapour phase epitaxy, Liquid phase epitaxy as n on insulators. Polysilicon Film Deposition: Thermal oxidation, Dieleo etallization & it's Application, Masking.		
UNIT-II	on, wie	DIFFUSION & ION IMPLANTATION		8 hours
dopants. LITHO	GRAP 1 beam	n, Distribution and range of implanted ions, Annealin HY & ETCHING: Optical lithography, X-ray lithograph lithography, Wet chemical etching and Dry chemical et DISCRETE DEVICE FABRICATION	ohy, Ion li	
Fabricati	ion o	f p-n junction, Bipolar junction transistor, JFET, well, N-well & Twin top Process)	MOSFE	
UNIT-IV		DESIGNING OF ANALOG AND DIGITAL CIRCUITS		8 hours
CMOS]	Logic	For analog and digital ICs, functional elements availab Circuits– Inverter, Two Input NOR Gate, Two Input NA s– single stage CE Amplifier and Emitter Follower.		
UNIT-V		BICMOS ICs		8 hours
•	rs, cap	and Scaling, BICMOS ICs: Choice of transistor types pacitors, Packaging: Chip characteristics, package fu	· I I	-
Course O	utco	me: After successful completion of this course stud	ents will l	be able to
CO 1		Identify different fabrication processes		
CO 2		Implement diffusion, ion implantation and different		

	types of lithography and etching.
CO 3	Explain Discrete devices and their fabrication.
CO 4	Design different digital logic circuits and analogcircuits
CO 5	Categorize BiCMOS ICs and their packaging.
Text books	
1. Peter Van	Zant, Microchip fabrication, McGraw Hill, 1997.
2. S.M. Sze,	VLSI technology, McGraw-Hill Book company, NY, 1988.
Reference Boo	oks
1. S.K. Gandhi,	'VLSI Fabrication Principles'.
2. S.M. Sze, 'Se	emiconductor Devices Physics and Technology'.
3. Puckness Do	uglas A, Eshraghiaw Kamran "Basic VLSI Design" – Prentice Hall (India)
4. K.R. Botkar,	'Integrated Circuits'

		M. TECH FIRST YEAR		
Course	Code	AMTVL0112	LTP	Credit
Course	Title	MOS Device Modeling	300	03
Course	Obiec	tive:		1
1	<u> </u>	dy and analysis of MOS structure, its operations	and . MC	DS as a
	capaci)	
2	To stu	ly and analysis of MOSFET Device Characteristics.		
3	To stu	ly and analysis of Mobility models, MOS Performance	ce parame	ters and
	its free	uency limitations.	-	
4	To stu	ly and analysis of SOI MOSFET.		
5	To stu	ly and analysis of SPICE Models for Semiconductor D	Devices.	
Pre-req	luisites	Basic Electronics Engineering		
		Course Contents / Syllabus		
UNIT-I	[MOS PHYSICS		8 hours
work fun band volt	iction di tage, ele	arfaces, Ideal MOS structure, MOS device in thermal e fferences, charges in oxide, interface states, band diag ctrostatics of a MOS (charge based calculations), calcu	ram of no lating vari	n-ideal MOS, flat- ous charges across
		hold voltage, MOS as a capacitor (2 terminal device),	Three ter	minal MOS, effect
on thresh		6		
UNIT-I		MOSFET DEVICE CHARACTERISTICS		8 hours
		sistors: MOSFET- basic operation and fabrication; th		
		ristics of MOSFET, short channel and Narrow width		U
		leling for low frequency and High frequency, high-k g	gate dielec	trics, ultra-shallow
-		and drain resistance.		401
UNIT-I		MOBILITY MODELS AND MOS PERFORMANCE PARAMETERS		10 hours
Low field		y, high field mobility, mobility various models, on cur	ront choro	atoristics off ourrant
		threshold swing, effect of interface states on sub threshold		
		effect of source bias and body bias on threshold voltage an		
		gnal model for low, medium and high frequencies.		
UNIT-I	IV	THE SOI MOSFET		6 hours
Multiple §	gate SOI	MOSFETs: double gate, FINFET, comparison of capacitan	ces with bu	
FD SOL A		hort channel effects, current-voltage characteristics: Lim &		
	• ,•		tion Floatin	ng hady and parasitic
impact ion		and high field effects: Kink effect and Hot-carrier degradat	lion, Floath	ing body and parasitie
impact ion BJT effect	ts, self-he	eating.		
impact ion	ts, self-he	•		8 hours
impact ion BJT effect UNIT-V	ts, self-he	spice models for semiconductor		8 hours
impact ion BJT effect UNIT-V	ts, self-ho V Iodels fo	eating. SPICE MODELS FOR SEMICONDUCTOR DEVICES		8 hours
impact ion BJT effect UNIT-V SPICE M paramete	ts, self-ho V Iodels fo ers;	eating. SPICE MODELS FOR SEMICONDUCTOR DEVICES	and level 3	8 hours model, Model
impact ion BJT effect UNIT-V SPICE M paramete	ts, self-ho V Iodels fo ors; Outco	eating. SPICE MODELS FOR SEMICONDUCTOR DEVICES r Semiconductor Devices: MOSFET Level 1, Level 2 a	and level 3	8 hours model, Model be able to

CO 3	Explain and analyse the Mobility models, MOS Performance parameters and its frequency limitations.
CO 4	Explain and analyse SOI MOSFET.
CO 5	Explain and analyse SPICE Models for Semiconductor Devices.
Text Boo	bks
	H. Nicollian, J. R. Brews, Metal Oxide Semiconductor - Physics and Technology, Joh ley and Sons.
	ndita Das Guptha, Amitava Das Guptha, Semiconductor Devices Modeling an chnology, Prentice Hall India
	n- PierrieColinge, Silicon-on-insulator Technology: Materials to VLSI, Kluwer Academi blishers group.
Referen	ce Books
	Colinge, "FinFETs and Other Multi-Gate Transistors", Springer. 2009
2. Ya	nnis Tsividis, Operation and Modeling of the MOS transistor, Oxford University Press.
Video I	Lecture Links:
Unit I:	
https://v	vww.youtube.com/watch?v=KohWxkovp0k
	vww.youtube.com/watch?v=CT6olzelSKQ
https://c	cw.tudelft.nl/course-lectures/semiconductor-junction/
Unit II:	
https://v	vww.youtube.com/watch?v=0C4uxtS-tlQ
	vww.youtube.com/watch?v=XcDeh98ppXk
https://v	vww.youtube.com/watch?v=uHTyw4GGnRo
https://v	vww.youtube.com/watch?v=xSh9PZZPpOc
Unit II	
https://v	vww.youtube.com/watch?v=4m49vM0Ryt8
https://v	vww.youtube.com/watch?v=xgYdLvWcvms
https://v	vww.youtube.com/watch?v=IrbGAgrcvic
Unit IV	:
-	vww.youtube.com/watch?v=WWjldCmRteg
	vww.youtube.com/watch?v=syRQTHF88eQ
	ptel.ac.in/courses/113/104/113104012/
	vww.youtube.com/watch?v=vS3S1KfNLhE
Unit V:	
	ptel.ac.in/courses/117/106/117106033/
	vww.digimat.in/nptel/courses/video/108107129/L04.html
	vww.digimat.in/nptel/courses/video/117105147/L01.html
	vww.coursera.org/lecture/averagedswitchmodelingandsimulation/spice-simulation- e-pJ99m

NPTEL course video link: https://nptel.ac.in/courses/117/106/117106033/

	M. TECH FIRST YEAR		
Course Code	AMTVL0113	LTP	Credit
Course Title		3 0 0	03
Course Objec			
1	To develop the ability to design and analyze MOS based		
1	Analog VLSI circuits.		
2	To analyze the performance of single stage amplifier		
3	To develop the skills to design Differential Amplifier		
	circuits for a given specification.		
4	Analyze the frequency response of the different		
	configurations of an amplifier		
5	To provide the knowledge of operational amplifier &		
	feedback topologies.		
Pre-requisites	Basic electronics devices, Semiconductor & Amplifiers		
	Course Contents / Syllabus		
UNIT-I	BASIC MOS DEVICE PHYSICS	8	hours
	ations, MOSFET as a Switch, MOS I/V Characteristics, Sec		
	dels, MOS Device Capacitances, NMOS versus PMOS Dev	ices, Lon	g-Channel
versus Short-Chan			
UNIT-II	SINGLE-STAGE AMPLIFIERS		8 hours
. .	ommon-Source Stage, Common-Source Stage with Resistive I		•
	Load, CS Stage with Current-Source Load, Source Follower, C	ommon-C	Gate Stage,
Cascode Stage, Fo			
UNIT-III	DIFFERENTIAL AMPLIFIERS		8 hours
•	l Differential Operation, Basic Differential Pair, Commo		· ·
	with MOS Loads, Gilbert Cell, Passive and Active Current Mi		ic Current
	Current Mirrors, Active Current Mirrors, Common-Mode Prope	erties	
UNIT-IV	FREQUENCY RESPONSE OF AMPLIFIERS		8 hours
	ations, Miller Effect, Association of Poles with Nodes, Con		
	Common-Gate Stage, Cascode Stage, Differential Pair, Noise	in Differe	ential Pairs
	ies, Effect of Loading, Effect of Feedback on Noise		
UNIT-V	OPERATIONAL AMPLIFIERS		8 hours
	tions, Performance Parameters, One-Stage Op Amps, Two-Sta		
	arison, Common-Mode Feedback. Input Range Limitations	, Slew Ra	ate, Power
Supply Rejection.			
Course Outco	me: After successful completion of this course studen	ts will b	e able to
CO 1	Draw the equivalent circuits of MOS based Analog VLSI an	ıd	
	analyse their performance.		
CO 2	Design analog VLSI circuits for a given specification.		
CO 3	Analyse the frequency response of the different configuration of an amplifier.	15	
CO 4	Analyse the feedback topologies involved in the amplifier design.		
CO 5	Appreciate the design features of the differential amplifiers.		

Text books
1. Razavi, "Design of Analog CMOS Integrated Circuits", 2nd Edition, McGraw Hill Edition
2016.
2. Paul. R.Gray&Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits",
Wiley, 5th Edition, 2009.
3. R. Gregorian and Temes, "Analog MOS Intgrated Circuits for Signal Processing", Wiley
Publications
Reference Books
1. Ken Martin, "Analog Integrated Circuit Design", Wiley Publications.
2. Sedra and Smith, "Microelectronic Circuits", Oxford Publications.
3. B.Razavi, "Fundamentals of Microelectronics", Wiley Publications

	M. TECH FIRST YEAR			
Course Code	AMTVL0114	LT	Р	Credit
Course Title	Microchip Fabrication Technology	3 0	0	03
Course Object			-	
1	To analyze the basic stages of manufacturing and crys	stal g	row	h.
2	To evaluate the process of wafer preparation and oxid			
3	To analyze the lithography and etching process			
4	To explain process of diffusion and ion implantation.			
5	To learn the basic process involved in metallization an	nd pa	ickag	ging
Pre-requisites:	Basics of semiconductors and their properties.			
	Course Contents / Syllabus			
UNIT-I	OVERVIEW OF SEMICONDUCTOR INDUSTR	Y	8	hours
Semiconductor Sil Quality.	aterial properties, Crystal growth, Basic wafer fabric fabric fabric on Preparation, Czochralski (CZ) method, Float zone			and Wafer
UNIT-II	WAFER FABRICATION	<u> </u>		8 hours
Layering , Patter	reparation, Wafer Terminology, Basic Wafer-Fabr rning, Doping, Heat treatments, Circuit design, n ss, Oxidation: Dry and wet oxidation, Clean room Cons	nasks	s, E	
UNIT-III	LITHOGRAPHY AND ETCHING			8 hours
	g process, Lithography: Optical Lithography, Electror	n bea	m li	thography,
	Chemical Etching, Dry etching Wet etching.			
UNIT-IV	DOPING AND DEPOSITION			8 hours
	ositions: Diffusion process steps, deposition, Drive			
	-Implantation Technique, Implantation Equipment,			
epitaxy, molecular	w pressure CVD systems, Plasma enhanced CVD syst	lems,	vaj	pour phase
UNIT-V	METALLIZATION AND PACAKAGING			8 hours
	Internation Application, Metallization Choices,	Dhr	raioo	
Deposition, Vacuu	Im Deposition, Sputtering Apparatus. Packaging of VL Design Consideration, Package Fabrication Technologi	SI de		1
Course Outcor	ne: After successful completion of this course stude	ents	will	be able to
CO 1	Analyze the basic stages of manufacturing and crystal	grov	wth.	
CO 2	Evaluate the process of wafer preparation and oxidation	on.		
CO 3	Analyze the lithography and etching process.			
CO 4	Explain the process of diffusion and ion implantation.			
CO f	Learn the basic process involved in metallization and	nack	aoin	a
CO 5	i	puer	ugin	g
Text books	, Microchip fabrication, McGraw Hill, 1997.	puer	ugiii	8

2. S.M. Sze, VLSI technology, McGraw-Hill Book company, NY, 1988 **Reference Books**

1. Wani-Kai Chen (editor), The VLSI Hand book, CRI/IEEE press, 2000

2. C.Y. Chang and S.M. Sze, ULSI technology, McGraw Hill, 2000

3. S.K. Ghandhi, "VLSI Fabrication Principles", Willy-India Pvt. Ltd, 2008.

4. J. D. Plummer, M. D. Deal and Peter B. Griffin, "Silicon VLSI Technology: Fundamentals, Practice and Modeling", Pearson Education Publication, 2009

	M. TECH FIRST YEAR		
Course Code	AMTVL0115	LT P	Credit
Course Title	Clean Room Technology And Maintenance	300	03
Course Objecti	ve:		
1	Study and explain cleanroom standards and cleanrooms.	ancillary	
2	Knowledge about clean room fabrication environment	•	
3	Identify the various filtration mechanisms.		
4	Categorize cleanroom testing and monitoring system.		
5	Analyze air quantities, pressure differences and clean r disciplines.	room	
Pre-requisites:	Basics of IC Technology		•
•	Course Contents / Syllabus		
UNIT-I	INTRODUCTION TO CLEAN ROOM TECHNOI	LOGY	8 hours
Introduction, Clear	nroom Classification Standards, Unidirectional air flow	clean roo	
	dards, Federal Standards 209 ,ISO standard 146		
classification(Phar	maceutical, cleanrooms)		
UNIT-II	CLEAN ROOM ENVIRONMENT		8 hours
Design of Turbule	ntly Ventilated and Ancillary Cleanrooms, Mini enviro	onments, is	olators and
RABS, Containme	nt zone, Construction and clean build, Design of Unidire	ectional Cle	eanrooms.
UNIT-III	FILTRATION MECHANISM		8 hours
High Efficiency A	ir filtration, Particle removal mechanisms, testing of high	n efficiency	filters.
UNIT-IV	TESTING & MONITORING SYSTEM		8 hours
	g and Monitoring, Principles of cleanroom testing, Testinn state, Monitoring of cleanroom.	ing in relat	ion to room
UNIT-V	CLEAN ROOM STANDARD PARAMETERS		8 hours
Measurement of A	ir Quantities and Pressure Differences, Air movement m containment leak testing.	control, Re	
Course Outcon	1e: After successful completion of this course studen	ts will be a	able to
CO 1	Specify cleanroom standards and ancillary cleanrooms	·.	
CO 2	Explain about clean room fabrication environment.		
CO 3	Identify the surface finishes and filtration mechanisms	•	
CO 4	Categorize cleanroom testing and monitoring system.		
CO 5	Analyze air quantities, pressure differences and clean r disciplines.	room	
Text books	•		
1. William W	White, Cleanroom Technology: Fundamentals of Decentry 2010.	esign, Tes	ting and
	storp, Introduction to Contamination Control and Clea	nroom Tea	chnology.
2. mans Mall	resp, inconcernent to containing the control and clea		

Wiley, 2008.

Reference Books

1. Wani-Kai Chen (editor), The VLSI Hand book, CRI/IEEE press, 2000

Link:

LIIIK.	
Unit 1	https://www.youtube.com/watch?v=8uGZMyjFugg
Unit 2	https://www.youtube.com/watch?v=YAouXIS_FSU
Unit 3	https://www.youtube.com/watch?v=wSSfOqEQClc
Unit 4	https://www.youtube.com/watch?v=aBIxPo0p7dc
Unit 5	https://www.youtube.com/watch?v=lHmHYWdH8Ug

	M. TECH FIRST YEAR	
Course Code	AMTVL0116 L T P	Credit
Course Title	ULSI Technology 3 0 0	03
Course Objecti	ve:	
1	To study the basics of chip fabrication and clean room.	
2	To learn the ion implantation and variousOxidation technologies.	
3	To study the classification of lithographic techniques.	
4	To identify various metallization schemes.	
5	To explain the concept of Memories.	
Pre-requisites:	Microelectronics	
	Course Contents / Syllabus	
UNIT-I	CLEAN ROOM AND WAFER PREPARATION	8 hours
	JLSI technology: clean room and safety requirements, Wafer cleani	
	hing techniques ,Microelectronics and microscopy, ULSI proce	
	M for construction analysis, TEM sample preparation techniques.	
UNIT-II	IMPURITY INCORPORATION	9 hours
Solid state diffusio		
Sonu-state unitusit	on modelling and technology, Ion implantation: modelling, technolog	gy and damage
annealing; Charact	erization of impurity profiles.	
annealing; Charact Oxidation: kinetic	erization of impurity profiles. as of silicon dioxide growth for thick, thin and ultra-thin fil	ms. Oxidation
annealing; Charact Oxidation: kinetic	erization of impurity profiles.	ms. Oxidation
annealing; Charact Oxidation: kinetic	erization of impurity profiles. as of silicon dioxide growth for thick, thin and ultra-thin fil	ms. Oxidation ULSI.
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III	erization of impurity profiles. so of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for	ms. Oxidation ULSI.
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography to Chemical Vapour	erization of impurity profiles. as of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly-	ms. Oxidation ULSI. 9 hours silicon, silicon
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography t Chemical Vapour dioxide, silicon ni	erization of impurity profiles. as of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and techniques.	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography to Chemical Vapour dioxide, silicon ni implantation and	erization of impurity profiles. as of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and ta- substrate defects, Dielectrics and isolation, Silicides, polycide	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography to Chemical Vapour dioxide, silicon ni implantation and Metallization and i	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects.	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion and salicide,
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography to Chemical Vapour dioxide, silicon nir implantation and Metallization and i UNIT-IV	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and te substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion and salicide, 8 hours
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography te Chemical Vapour dioxide, silicon ni implantation and Metallization and i UNIT-IV Evaporation and	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne	ms. Oxidation ULSI. silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography t Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization sche	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and te substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM	ms. Oxidation ULSI. silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography te Chemical Vapour dioxide, silicon ni implantation and Metallization and Metallization and Metallization sche metallization and	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne	ms. Oxidation ULSI. silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography ta Chemical Vapour dioxide, silicon nir implantation and Metallization and i UNIT-IV Evaporation and Metallization sche metallization and microelectronics.	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu	ms. Oxidation ULSI. silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography te Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization sche metallization and microelectronics. UNIT-V	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and ta substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu ULSI DEVICES	ms. Oxidation ULSI. silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in 6 hours
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography ta Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization sche metallization and microelectronics. UNIT-V DRAM cell with p	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu ULSI DEVICES lanar capacitor, ULSI devices II: DRAM cell with stacked capacitor	ms. Oxidation ULSI. silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in 6 hours
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography te Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization sche metallization and microelectronics. UNIT-V DRAM cell with p III: DRAM cell with	erization of impurity profiles. s of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly. tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu ULSI DEVICES lanar capacitor, ULSI devices II: DRAM cell with stacked capacitor th trench capacitor, ULSI devices IV: SRAM.	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in 6 hours , ULSI devices
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography te Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization sche metallization and microelectronics. UNIT-V DRAM cell with p III: DRAM cell with	erization of impurity profiles. es of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu ULSI DEVICES lanar capacitor, ULSI devices II: DRAM cell with stacked capacitor	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in 6 hours , ULSI devices
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography te Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization sche metallization and microelectronics. UNIT-V DRAM cell with p III: DRAM cell with	erization of impurity profiles. s of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly. tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu ULSI DEVICES lanar capacitor, ULSI devices II: DRAM cell with stacked capacitor th trench capacitor, ULSI devices IV: SRAM.	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in 6 hours , ULSI devices
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography to Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization and Metallization and microelectronics. UNIT-V DRAM cell with p III: DRAM cell with	erization of impurity profiles. ss of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu ULSI DEVICES lanar capacitor, ULSI devices II: DRAM cell with stacked capacitor th trench capacitor, ULSI devices IV: SRAM. ne: After successful completion of this course students will be ab	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in 6 hours , ULSI devices
annealing; Charact Oxidation: kinetic technologies in UL UNIT-III Photolithography ta Chemical Vapour dioxide, silicon nir implantation and Metallization and Metallization and Metallization sche metallization and microelectronics. UNIT-V DRAM cell with p III: DRAM cell with Course Outcom CO 1	erization of impurity profiles. ss of silicon dioxide growth for thick, thin and ultra-thin fil SI; Characterization of oxide films; high K and low K dielectrics for LITHOGRAPHIC TECHNIQUES echniques for VLSI/ULSI; Mask generation. deposition techniques: CVD techniques for deposition of poly- tride and metal films; epitaxial growth of silicon; modelling and to substrate defects, Dielectrics and isolation, Silicides, polycide nterconnects. METALLIZATION TECHNIQUES sputtering techniques. Failure mechanisms in metal interconne mes. TEM in failure analysis, Novel devices and materials, TEM advanced electronics packaging technologies, High – resolu ULSI DEVICES lanar capacitor, ULSI devices II: DRAM cell with stacked capacitor th trench capacitor, ULSI devices IV: SRAM. Te: After successful completion of this course students will be ab Explain basics of chip fabrication and clean room.	ms. Oxidation ULSI. 9 hours silicon, silicon echnology. Ion and salicide, 8 hours cts; multilevel in under bump tion TEM in 6 hours , ULSI devices

CO 5	Design semiconductor memories.
Text books	
1. S.M. Sze(2nd Edi	tion)"VLSI Technology", McGraw Hill Companies Inc.
2. Chih-Hang Tung	, George T.T. Sheng, Chih-Yuan Lu, ULSI Semiconductor Process
Technology Atlas, J	ohn Wiley & Sons, 2003.
3. C.Y. Chang and S	.M. Sze (Ed), "ULSI Technology", 2000, McGraw Hill Companies Inc.
Reference Books	
1. Stephena, Campb	ell, "The Science and Engineering of Microelectronic Fabrication", Second
Edition, Oxford Uni	versity Press.
2. James D. Plumme	r, Michael D. Deal, "Silicon VLSI Technology" Pearson Education Reading.

	M. TECH FIRST YEAR		
Course Code	AMTVL0201	LT P	Credit
Course Title	Digital Design using FPGA and CPLD	300	03
Course Objecti	ve:		
1	To study finite state machines and its realization.		
2	To study asynchronous Sequentialmachine.		
3	To learn Designing of Digital logic using PLD.		
4	To get knowledge of different FPGA series.		
5	To study different CPLD series.		
Pre-requisites:	Basics of CMOS and Fabrication.		
	Course Contents / Syllabus	i	
UNIT-I	FINITE STATE MACHINE (FSM)		nours
from verbal descri	gn Strategies, Mealy & Moore model, Realization of State E ption, Minimization of State Table from completely & In oduction to Algorithmic State Machine. ASYNCHRONOUS SEQUENTIAL CIRCUIT	-	
Asynchronous Seq machine, Races &		-	uential
UNIT-III	PROGRAMMABLE LOGIC DEVICES (PLD)		8 hours
	ecture, Features & Digital Design of ROM, EPROM, EEPRON Design of a keypad scanner using PLD.	A, Flash M	emory,
UNIT-IV	FIELD PROGRAMMABLE GATE ARRAY (FPGA)		8 hours
Xilinx FPGA XC4	ing architecture, Design flow, Technology Mapping for FPG 000, Comparative Study of Xilinx (ZU11EG) & Intel (Straeference to cortex A53.		(650 series
UNIT-V	COMPLEX PROGRAMMABLE LOGIC DEVICES		9 hours
	(CPLD)		8 hours
(Mach 1 to 5), Cy Speed performance	(CPLD) x 5000/7000 series and Altera FLEX logic- 10000 series Cl press FLASH 370 Device technology, Lattice plsi architect and system programmability.	tures – 30	D's- CPLD
(Mach 1 to 5), Cy Speed performance	x 5000/7000 series and Altera FLEX logic- 10000 series Cl press FLASH 370 Device technology, Lattice plsi architect	tures – 30	D's- CPLD
(Mach 1 to 5), Cy Speed performance	x 5000/7000 series and Altera FLEX logic- 10000 series Cl press FLASH 370 Device technology, Lattice plsi architect and system programmability.	tures – 30	D's- CPLD
(Mach 1 to 5), Cy Speed performance Course Outcom	x 5000/7000 series and Altera FLEX logic- 10000 series Cl press FLASH 370 Device technology, Lattice plsi architect and system programmability. Ie: After completion of this course students will be able t	tures – 30	D's- CPLD
(Mach 1 to 5), Cy Speed performance Course Outcom CO 1	x 5000/7000 series and Altera FLEX logic- 10000 series Cl press FLASH 370 Device technology, Lattice plsi architect and system programmability. Atter completion of this course students will be able t Realize finite state machines.	tures – 30	D's- CPLD
(Mach 1 to 5), Cy Speed performance Course Outcom CO 1 CO 2	x 5000/7000 series and Altera FLEX logic- 10000 series Cl press FLASH 370 Device technology, Lattice plsi architect and system programmability. ae: After completion of this course students will be able t Realize finite state machines. Formulate asynchronous Sequentialmachine.	tures – 30	D's- CPLD
(Mach 1 to 5), Cy Speed performance Course Outcom CO 1 CO 2 CO 3	x 5000/7000 series and Altera FLEX logic- 10000 series Cl press FLASH 370 Device technology, Lattice plsi architect and system programmability. ne: After completion of this course students will be able t Realize finite state machines. Formulate asynchronous Sequentialmachine. Design Digital logic using PLD.	tures – 30	D's- CPLD

- 1. P. K. Chan& S. Mourad, Digital Design using Field Programmable Gate Array, Prentice Hall.
- 2. Charles H Roth, Jr., "Digital Systems Design Using VHDL", PWS, 1998.
- 3. S. Trimberger, Edr., Field Programmable Gate Array Technology, Kluwer Academic Pub.

Reference Books

- 1. J. Old Field, R. Dorf, Field Programmable Gate Arrays, John Wiley& Sons, Newyork.
- 2. S.Brown, R.Francis, J.Rose, Z.Vransic, Field Programmable GateArray, Kluwer Pub.
- 3. Richard FJinder, "Engineering Digital Design," Academic press

	M. TECH FIRST YEAR	
Course Code	AMTVL0202 LT P	Credit
Course Title	Low Power VLSI Design 300	03
Course Objectiv	ve:	
1	To provide the knowledge of Low Power VLSI Chips and	
	different losses associated with the CMOS Devices	
2	To provide the knowledge of Power estimation Simulation Power	
	analysis and Probabilistic power analysis of Design	
3	To provide the knowledge of circuit level and Logic level design.	
4	To provide the knowledge of Low Power Architecture and system.	
5	To provide the basic knowledge of Low Power Clock Distribution	
	Algorithm & Architectural Level Methodologies	
Pre-requisites:	CMOS VLSI Design, Digital logic Design.	
	Course Contents / Syllabus	
UNIT-I	INTRODUCTION & DEVICE AND TECHNOLOGY	8 hours
	IMPACT ON LOW POWER	
	ds for Low Power VLSI Chips, Sources of power dissipation on digit	
	ow power approaches, Physics of power dissipation in CMOS Devices	
	logy impact on low power: Dynamic dissipation on low power, Tran	-
	ness, Impact of technology Scaling, Technology & Device innovation	
UNIT-II	POWER ESTIMATION SIMULATION POWER ANALYSIS& PROBABILISTIC POWER ANALYSIS	8 hours
simulation, Capacit Architecture Level Probabilistic powe	Simulation Power analysis: - SPICE circuit simulators, Gate level lo ive Power Estimation, Static State Power, Gate level Capacitance Esti analysis, Data Correlation Analysis in DSP systems. Monte Carlo sime er analysis:- Random Logic Signals. Probability & frequency, Probab chniques, Signal Entropy.	mation, ulation.
UNIT-III	LOW POWER DESIGN	Q hours
	ver Consumption in circuit level, Flip Flop & Latches design, High	8 hours
node, Low power d		Capacitance
	e Reorganisation, Signal gating, Logic encoding, state machine en	coding Pre
computation logic	Reorganisation, Signal gating, Logic cheoding, state indennie en	leoung, The
UNIT-IV	LOW POWER ARCHITECTURE AND SYSTEM	8 hours
	ance Management, Switching Activity Reduction, Parallel Archit	
	, Flow graph Transformation, Low Power Arithmetic Component,	
Memory Design	, Thow graph Transformation, Low Tower Attainede Component,	Low Tower
UNIT-V	LOW POWER CLOCK DISTRIBUTION & ALGORITHM	8 hours
	& ARCHITECTURAL LEVEL METHODOLOGIES	
distributed buffers, Algorithm & Arc	Ex Distribution: -Power dissipation in clock distribution, single zero skew Vs tolerable skew chip and package co-design of clock net hitectural Level Methodologies: -Introduction, Design flow, Algori zation, Architectural level estimation and synthesis	work

CO 1	Identify different losses associated with the CMOS Devices.
CO 2	Explain the concept of Power estimation Simulation Power analysis and Probabilistic Power analysis of Design.
CO 3	Identify circuit and logic level low power design.
CO 4	Analyze the Low Power Architecture and system.
CO 5	Explain Low Power Clock Distribution Algorithm.
Fext books	
1. Gary K.	Yeap, Practical Low Power Digital VLSI Design, KAP 2007
2. Rabaey,	Pedram, "Low power design methodologies" Kluwer Academic, 1997
Reference Bo	oks

M. TECH FIRST YEAR					
Course C	Course CodeAMTVL0251L T PCi				
Course Title		Digital Design using FPGA and CPLD Lab	0 0 4	02	
Pre-requi	i sites: E	asics Knowledge of Digital Electronics & Digital System Des	ign		
Sr. No.	List of	f Experiment			
1	Demor	stration of FPGA and CPLD Boards.			
2		& Implement the Boolean Expression Y=AB+BC+CA on CP	LD.		
3	Design	& Implement Full adder and Full Subtractor on CPLD.			
4.	Design CPLD.	& Implement (i) 2-bit comparator and (ii) 2-bit multiplier (iii) 8x1 Mul	tiplexer on	
5	Design	& Implement S-R, J-K, D and T Flip Flops on FPGA.			
6	Counte	& Implement (i) Universal shift register (ii) 4- bit UP-E r on FPGA.	OWN Sy	nchronous	
7	Design	& Implement the (i) 4-bit ALU (ii) 8- bit SRAM on FPGA.			
8	Design	& Implement 7- Segment Display Driver circuit using CPLD.			
9	Design & Implement Sequence Detector Circuit to detect given sequence 10101010 on FPGA.				
10	Model	ing and Implementation of UART on FPGA.			
Lab Cou	rse Ou	tcome: After completion of this course students will be ab	le to		
CO 1	Design	& Implement the Combinational Logic Circuits on CPLD.			
CO 2	Design & Implement the Sequential Logic Circuits on CPLD.				
CO 3	Design & Implement the Memories on FPGA.				
CO 4					
Link:					
1	https://	www.youtube.com/watch?v=9mpRF6bAY1g			
2	https://www.youtube.com/watch?v=EGDHXynlXMk				
3	https://	www.youtube.com/watch?v=H2GyAIYwZbw			
4	https://	www.youtube.com/watch?v=WKZgK3BKDIo			
5		www.youtube.com/watch? k4CEfNg4&list=PLJ5C_6qdAvBELELTSPgzYkQg3HgclQh-	5&index=	6	

	M. TECH FIRST YEAR						
Course Code	AMTVL0252	LT P	Credit				
Course Title	Low Power VLSI Design Lab	004	02				
	Software Tool: SOFTWARE TOOL: CADENCE – Tool Bundle Consisting of:						
	ALOG & MIXED SIGNAL DESIGN FRONT END TO	0					
	Virtuoso(R) Spectre(R) Simulator REL MMSIM 7.1						
	• Virtuoso(R) Schematic Editor XL REL IC 6.1.0						
2. ANA	ALOG BACK END TOOL						
•	 Virtuoso(R) Layout Suite XL REL IC 6.1.0 						
3. PHY	YSICAL DOMAIN						
	SOC Encounter - XL (aka Cadence (R) SOC Encounter	er - GPS)					
Sr. No.	Name of Experiment						
1	I-V characteristics of long and short-channel MOSF	ET transisto	ors in CMOS				
	technology.						
2	The gate capacitance of an MOS transistor. (Gate Capa	citance v/s V	/GS).				
3	The impact of device variations on static CMOS invert	er VTC.					
4	The VTC of CMOS inverter as a function of supply vol		ostrate bias.				
5	Dynamic power dissipation due to charging and discharged						
6	Short-circuit currents during transients and impact of lo	ad capacitar	nce on short-				
	circuit current in a CMOS inverter.						
7	The VTC of a two-input NAND & NOR data depender						
8	The variable-threshold CMOS inverter and Combination	nal circuit.					
9	The low-power / low voltage D-Latch circuit.						
10	Low-power circuits						
	a. The Full Adder						
	b. The Binary Adder						
	c. The Multiplier						
	d. The Shifter.						
	e. The SRAM Cell f. The DRAM Cell						
Lah Caursa Or		hla 4a					
	itcome: After completion of this course students are a						
CO 1 CO 2	Study and analyze the various parameters of MOS Tran		n low nowon				
02	Study and analyze the different parameters of CMOS	s inverter it	or low power				
CO 3	design.	s for low po	wer circuits				
05	CO 3 Design and implement the combinational digital circuits for low power circuit						
CO 4	Design and implement the sequential digital circuits for	· low power	circuits.				
Link:		P3,, 9 1					
Unit 1	https://www.youtube.com/watch?v=TFOO1JAll2Y						
	https://youtu.be/ruClwamT-R0						
Unit 2	https://www.analog.com/en/design-center/design-tools	-and-calcula	tors/ltspice-				
	simulator.html						
	https://www.youtube.com/watch?v=OgO1gpXSUzU						

	https://nptel.ac.in/courses/111/106/111106134/	
Unit 3	https://nptel.ac.in/courses/106/105/106105034/	
	https://www.youtube.com/watch?v=dqcfYTePRxQ	
	https://www.youtube.com/watch?v=rEeqxozkdZ0	
Unit 4	https://www.digimat.in/nptel/courses/video/106105034/L37.html	
Unit 5	https://nptel.ac.in/courses/106/105/106105161/	

	I		I
Course Code	AMTVL0211 L T	<u>P</u>	Credit
Course Title	VLSI Testing and Testability3 0	0	03
Course Objecti	ve:		
1	To provide an in-depth understanding of the importance and		
	principle of testing and verification of faults affecting VLSI circuits.		
2	To provide the knowledge of the testing and testability of combinational circuits.		
3	To provide the knowledge of the testing and testability of sequential circuits.		
4	To provide an in-depth understanding of the memory design testing methods.	and	
5	To provide the basic knowledge of Built in self-test (BIST) Techniques.		
Pre-requisites:	Digital and analog IC fabrication.		
	Course Contents / Syllabus		
UNIT-I	INTRODUCTION TO VLSI TESTING AND FAULT MODELING		10 hours
Importance and Pri	nciple of testing, Challenges in VLSI testing, Levels of abstract	tions	in VLSI
testing, Functional	vs. Structural approach to testing, Complexity of the testing pro	oblem	, Types of
Testing, DC and A	1		
Fault Modeling: St	uck at fault, fault equivalence, fault collapsing, fault dominance		t simulation
UNIT-II	TESTING AND TESTABILITY OF COMBINATIONAL CIRCUITS		8 hours
	sics: Test generation algorithms, Random test generation, ATP		
	uits, Boolean difference, Path sensitization, D – algorithm, POD)EM,	Testable
combinational logi			1
UNIT-III	TESTING AND TESTABILITY OF SEQUENTIAL CIRCUITS		8 hours
	al circuits as iterative combinational circuits, state table verifica	ation,	test
0	n circuit structure, Sequential ATPG,		
	es, scan path technique (scan design), partial scan, Boundary sca	an	
UNIT-IV	MEMORY, DELAY, FAULT AND IDDQ TESTING		6 hours
IDDQ testing, Test	esign, RAM fault models, Test algorithms for RAM, Delay fau ing methods, Limitations of IDDQ testing	lts, D	elay tests,
UNIT-V	BUILT IN SELF-TEST (BIST) TECHNIQUES		8 hours
· · · · · · · · · · · · · · · · · · ·	BIST): Design rules, Exhaustive testing, Pseudo-random testing		
	oonse analysis, Logic BIST architectures, Introduction to Test c		
Course Outcom	e: After successful completion of this course students will	be ab	le to

CO 2	Analyse the various test generation methods for combinational circuits.	
CO 3	Analyse the various test generation methods for sequential circuits.	
CO 4	Identify the design for testability methods for different memory circuits.	
CO 5	Recognize the BIST techniques for improving testability.	

Text books

- 1. An Introduction to Logic Circuit Testing Parag K. Lala, (Morgan & Claypool Publishers)
- 2. Essentials of Electronic Testing for Digital, Memory & Mixed Signal VLSI Circuits Michael L. Bushnell and Vishwani D. Agrawal, (Kluwar Academic Publishers 2000)
- 3. Digital System Testing and Testable Design M. Abramovici, M.Breuer, and A. Friedman (Jaico Publishing House)

Reference Books

- 1. Introduction to Formal Hardware Verification Thomas Kropf (Springer)
- 2. VLSI Test Principles and Architectures Design for Testability W.W. Wen (Morgan Kaufmann Publishers. 2006)
- 3. Digital Systems and Testable Design M.Abramovici, M.A. Breuer and A.D. Friedman (Jaico Publishing House)
- 4. Design Test for Digital IC's and Embedded Core Systems A.L. Crouch (Prentice Hall International)

Link:	
Unit 1	https://youtu.be/u_XLaTTzXaE
Unit 2	https://nptel.ac.in/courses/106/103/106103116/
Unit 3	https://nptel.ac.in/courses/106/103/106103116/
Unit 4	https://nptel.ac.in/courses/106/103/106103116/
Unit 5	https://nptel.ac.in/courses/106/103/106103116/

	M. TECH FIRST YEAR AMTVL0212	ITT	~	10.	
Course Code				Credit	
Course Title	VLSI DSP Architectures	3 0 0		03	
Course Object	tive:				
1	To explain basics of DSP processors and micro programming				
	approaches.				
2	To learn building a data path and control path.				
3	To outline pipelining and pipe lined data path.	· 1			
4 5	To analyzeA/D and D /A converters and DSP computat To identify thearchitectures for programmable				
5	processing devices.	uigitai	signal		
Pre-requisites	VLSI DSP Architecture				
<u>110-10quisites</u>	Course Contents / Syllabus				
UNIT-I	BASICS OF DSP PROCESSORS		0 h	01180	
		n Mian		ours	
	s of Instruction set architectures of DSP processor plementation of control part of the processor, CPU performed				
evaluating perform				s laciol	
UNIT-II	DATA PATH			9 hou	
	gic design conventions, building a data path, a simple in	nnlemen			
	mentation, simplifying control design.	npremen	tation s	cilcille,	
UNIT-III	PIPELINING			9 hou	
	ipelining, a pipe lined data path, pipe lined control, data l	hazards a			
-	ich hazards, advanced pipelining: extracting more perform			, ai ailig	
UNIT-IV	CONVERSIONS			8 hou	
sources of errors	for signals and coefficients in DSP systems, dynam in DSP implementations, A/D conversion errors, and DS				
D /A conversion of				0.1	
UNIT-V	PROGRAMMABLE PROCESSORS			8 hou	
architectural feat	architectures for programmable digital signal pro ures, DSP computational building blocks, bus archit ess generation unit, speed issues, features for external inte	tecture,	data ac		
Course Outco	me: After successful completion of this course stude	nts will k	oe able	to	
CO 1	Identify basics of DSP processors and micro approaches.	progran	nming		
CO 2	Learn building a data path and control path.				
CO 3	Analyze pipelining and pipe lined data path.				
CO 4	CalculateA/D and D /A converters and DSP computational errors.				
CO 5	Implement architectures for programmable digital signed evices.	nal proc	essing		
Text books	1 · ·				
	and J.L Hennessy, "Computer Organization and Design:	Hardwa	are/ Sof	tware	
1. D. 11, 1 uno1001					

2. A. S Tannenbaum, "Structural Computer organization", 4th Ed., Prentice-Hall, 1999. **Reference Books**

 W. Wolf, "Modern VLSI Design: System on Silicon", 2nd Ed., Person Education,1998.
 Keshab Parhi, "VLSI Digital Signal Processing system design and implementations", Wiley1999.

M. TECH FIRST YEAR				
Course (Code	AMTVL0213	LT P	Credit
Course 7	Fitle	Full Custom Design	300	03
Course (Objective		1	
1 Stu	dents will b	be familiar with the schematic fundamentals and layout	designs fl	ow.
		come to know about standard library cells as well as oth		
	ic cells.	•		
3 Stu	dents will b	be able to design interconnect layout and know special e	electrical	
req	uirements f	or it.		
		be able to incorporate special design rules and step cove	rage rules	5.
5 Stu	dents will b	be able to learn various kind of CAD tools.		
Pre-requ	isites:Bas	ics of VLSI		
		Course Contents / Syllabus		
UNIT-I		INTRODUCTION		8 hours
Introductio	on: Schema	atic fundamentals, Layout design, Introduction to	CMOS V	LSI manufacturing
		l connectivity, Process design rules Significance of f	full custor	n IC design, layout
design flow	WS.			
UNIT-II		SPECIALIZED BUILDING BLOCKS		8 hours
		for specialized building blocks Standard cell libraries,	Pad cells	and Laser fuse cells,
Power grid	l Clock sigr	als and Interconnect routing.		
UNIT-II		LAYOUT DESIGNS		8 hours
	•	esign, Special electrical requirements, Layout design te	chniques	to address electrical
characteris				
UNIT-IV		LAYOUT CONSIDERATIONS		8 hours
•		s due to process constraints Large metal via impleme		1 0
	sign rules, l	Latch-up and Guard rings, Constructing the pad ring, M	ınımızıng	
UNIT-V		LAYOUT CAD TOOLS	~	8 hours
		ols for layout, Planning tools, Layout generation tools,	* *	
Course (Jutcome:	After successful completion of this course students	will be a	ble to
CO 1	Design	layout with schematic.		
CO 2	Differe	ntiate standard cells and other types of cells.		
CO 3	Do the	electrical connections and interconnect layout designs.		
CO 4	Tackle with the minimization of stress effects.			
CO 5	Demor	strate the layout tools, generation tools, etc.		
Text boo	ks			
1.Dan Clein, CMOS IC Layout Concepts Methodologies and Tools, Newnes, 2000.				
2.Ray Alan Hastings, The Art of Analog Layout, 2nd Edition, Prentice Hall, 2006				
Reference Books				
1. CMOS:	Circuit Des	ign, Layout, and Simulation by R. Jacob Baker. 3rd Ed	ition.	
		<u> </u>		

	M. TECH FIRST YEAR			
Course Code	AMTVL0214	LT P	Credit	
Course Title	MEMS Sensor Design	300	03	
Course Object	5	•••		
1		brication		
2	To provide the knowledge about Mechanics of Bean Diaphragm Structures.	n and		
3	To provide the knowledge about drag effect of a flui damping and its models.	id, Air		
4	To provide the knowledge of Electrostatic Actuation			
5	To provide the basic knowledge of MEMS Structure	es and		
	Systems in RF applications.			
Pre-requisites:	Basics of sensors.			
	Course Contents / Syllabus			
UNIT-I	INTRODUCTION TO MEMS		8 hours	
MEMS Fabricatio	on Technologies, Materials and Substrates for M	EMS, Pro		
	Sensors/Transducers, Piezoresistive Effect, Piezoelec			
Sensor.		,		
UNIT-II	MECHANICS OF BEAM AND DIAPI STRUCTURES	HRAGM	8 hours	
Bent Beam, Bendi	Hooke's Law. Stress and Strain of Beam Structure ng Moment and the Moment of Inertia, Displacement ading of Contilever Beam Under Weight			
	nding of Cantilever Beam Under Weight. AIR DAMPING		0 1	
UNIT-III		<u> </u>	8 hours	
The Effects of A Equations for Squ	luid: Viscosity of a Fluid, Viscous Flow of a Fluid, I ir Damping on Micro-Dynamics. Squeeze-film Air leeze-film Air Damping, Damping of Perforated This ic Equations for Slide-film Air Damping, Couette-	Damping: ick Plates.	Reynolds' Slide-film	
UNIT-IV	ELECTROSTATIC ACTUATION		8 hours	
of Mechanical Ac	es, Normal Force, Tangential Force, Fringe Effects, tuators: Parallel-plate Actuator, Capacitive sensors. Step Voltage Driving, Negative Spring Effect and Vib	Step and	Alternative	
UNIT-V	MEMS STRUCTURES AND SYSTEMS APPLICATIONS	IN RF	8 hours	
	in RF MEMS, Microelectromechanical Reson Resonators, Coupled-Resonator Bandpass Filters, pelectromechanical Switches: Membrane Shunt Swit	Film Bul		
Course Outcome: After successful completion of this course students will be able to				
CO 1	Identify MEMs fabrication Technologies.			

CO 2	Analyse Mechanics of Beam and Diaphragm Structures.
CO 3	Explain drag effect of a fluid, Air damping and its models.
CO 4	Design different Electrostatic Actuators.
CO 5	Explain MEMS Structures and Systems in RF applications.
Text books	
1. Minhang 2005, Else	Bao, 'Analysis and Design Principles of MEMS Devices', First edition evier.
2. Nadim Ma	aluf, KirtWilliums, 'An Introduction to Microelectromechanical Systems
Engineerii	ng',2nd ed., Artech House microelectromechanical library.
Reference Boo	oks
1. RS Muller	r, Howe, Senturia and Smith, "Micro-sensors", IEEE Press.

	M. TECH FIRST YEAR						
Course Code	AMTVL0215	LT P	Credit				
Course Title	Nanoscale Devices: Modeling & Simulation	300	03				
Course Object	ctive:						
1	To introduce novel MOSFET devices and understan	d the					
	advantages of multi-gate devices						
2	To introduce the concepts of nanoscale MOS transistor and						
	their performance characteristics						
3	To study the various Nano-scaled MOS transistor circuits	5					
4 5	To study radiation effects in SOI MOSFETs						
5	To study digital circuits and impact of device performan digital circuits	ice on					
	Course Contents / Syllabus						
UNIT-I	MOSFET SCALING		8 hours				
inversion – mo mobility–gatesta		igatetech	nology–				
UNIT-II	MOS ELECTROSTATICSatics- 1D- 2DMOSElectrostatics,MOSFET		8 hours				
voltage effect - s	CMOSTechnology – Ultimate limits, double gate MO emiconductor thickness effect – asymmetry effect – oxide current – two dimensional confinements, scattering –mob	thickne					
UNIT-III	SILICON NANOWIRE MOSFETS		10 hours				
non- degenerate Carbon nanotul Physical structu Carbon nanotube in molecules – C channels – Molec UNIT-IV	Silicon nanowire MOSFETs – Evaluation of I-V characteristics – The I-V characteristics for non- degenerate carrier statistics – The I-V characteristics for degenerate carrier statistics – Carbon nanotube – Band structure of carbon nanotube – Band structure of graphene – Physical structure of nanotube – Band structure of nanotube – Carbon nanotube FETs – Carbon nanotube MOSFETs – Schottky barrier carbon nanotube FETs – Electronic conduction in molecules – General model for ballistic nano transistors – MOSFETs with 0D, 1D, and 2D channels – Molecular transistors – Single electron charging – Single electron transistorsUNIT-IVRADIATION EFFECTS IN SOI MOSFETS6 hours						
	in SOI MOSFETs, total ionizing dose effects – single-g	ate SOI	– multi-				
	gle event effect, scaling effects.						
UNIT-V	DIGITAL CIRCUITS		<u>8 hours</u>				
trade off – mu transconductance	- impact of device performance on digital circuits – leak lti VT devices and circuits – SRAM design, analog e - intrinsic gain – flicker noise – self heating –band gap vo lifier – comparator designs, mixed signal – successive s.	circuit o oltage ref	lesign – èrence –				

Course Outc	ome: After successful completion of this course students will be able to
CO 1	Explain the MOS devices used below 10nm and beyond with an eye on the future
CO 2	Explain the physics behind the operation of multi-gate systems.
CO 3	To design circuits using nano-scaled MOS transistors with the physical insight of their functional characteristics
CO 4	Explain radiation effects in SOI MOSFETs
CO 5	Explain and designdigital circuits and impact of device performance on digital circuits
Text books	
	inge, "FINFETs and other multi-gate transistors", Springer – Series on ed circuits and systems,2008
	Lundstrom, Jing Guo, "Nanoscale Transistors: Device Physics, gand Simulation", Springer, 2006
Reference bo	
	ndstorm, "Fundamentals of Carrier Transport", 2nd Ed., Cambridge University cambridge UK, 2000

	M. TECH FIRST YEAR						
Course Code	rse Code AMTVL0216 LT P Credi						
Course Title	Physical Design & Automation	300	03				
Course Object	ive:						
1	Students will know how to place the blocks and how to pa	rtition					
	the blocks while for designing the layout for IC.						
2	Students will be familiar to various kind of VLSI Automati Algorithms.	ion					
3	Students will know the concepts of Physical Design Proces such as Floor planning, Placement algorithms.	s					
4	Students will learn Global Routing and Detailed Routing algorithms.						
5	Students will learn over the Cell Routing in detail.						
Pre-requisites:	Basics of digital IC and data structures.						
	Course Contents / Syllabus						
UNIT-I	LOGIC SYNTHESIS & VERIFICATION		8 hours				
	& Verification: Introduction combinational logic synthesi	is. Bina					
	re models for High- level synthesis.	,					
UNIT-II	VLSI AUTOMATION ALGORITHMS		8 hours				
	n Algorithms: Partition: problem formulation, classificat	ion of					
	p migration algorithms, simulated annealing & evolution						
algorithms.			1 0				
UNIT-III	PLACEMENT, FLOOR PLANNING & PIN ASSIGNM	1ENT	8 hours				
Placement, Floor	Planning & Pin assignment: problem-formulation, simulation	on-base	d placement				
algorithms, other	r placement algorithms, constraint-based floor plannin	ıg, floc	or planning				
algorithms for mix	xed block & cell design. General & channel pin assignment.						
UNIT-IV	GLOBAL ROUTING & DETAILED ROUTING		8 hours				
algorithm, line pro Detailed Routing: algorithms, two-li switchbox routing		oaches. single la ng algo	ayer routing rithms, and				
UNIT-V	OVER THE CELL ROUTING & VIA MINIMIZATIO		8 hours				
unconstrained via	buting & via Minimization: two layers over the cell rout minimization Compaction: problem formulation, one-dimen- sed Compaction, hierarchical compaction.	-					
Course Outcon	me: After successful completion of this course students v	vill be a	ble to				
CO 1	Know how to place the blocks and how to partition the while for designing the layout for IC.	blocks					
CO 2	Explain VLSI Design Automation.						
CO 3	Explain the concepts of Physical Design Process such as planning, Placement and Routing.	Floor					
CO 4	AnalyzeGlobal Routing and Detailed Routing algorithms.						

(CO 5	Decompose large problem into pieces via minimization.
Text	books	
1.	Naveed	Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer
	Academic	Publisher, Second edition.
Refe	rence Bo	oks
1.	Christoph	nMeinel&ThorstemTheobold, "Algorithm and Data Structures for VLSI
	Design",	KAP 2002.
2.	Rolf Drec	hsheler : "Evolutionary Algorithm for VLSI", second edition
3.	Trimburg	er," Introduction to CAD for VLSI", Kluwer Academic publisher, 2002.

	M. TECH FIRST YEAR				
Course Code	AMTVL0217	L	Т	P	Credit
Course Title	Embedded Microcontrollers	3	0	0	03
Course Objec	tive:				
1	To provide the Basic knowledge of interfa Embedded System.	acin	g v	with	
2	To analyse the process design of embedded sy	sten	n.		
3	To realize the architecture of PIC 16F Microco Series.	ontro	olle	er	
4	To familiar with the fundamentals of ARM Pro Cortex M3 & M4.	oces	ssoi	r	
5	To apply the knowledge of ARM Instruction programming.	on S	Set	for	
Pre-requisites	: Digital System design, 8051 Microcontroller				
	Course Contents / Syllabus				
UNIT-I	TYPICAL EMBEDDED SYSTEMS				8 hours
	type of interface, Memory Shadowing, Mem and actuators, Introduction to Communicati	on			
UNIT-II	EMBEDDED SYSTEMS DESIGN PROCE	SS			8 hours
Decision (Hardy Environment (us	cess, The Embedded Design Life Cycle, Selecti ware and Software partitioning), The Dev be of target machine or its emulator and In- ques, Introduction to BDM, JTAG, and Nexus.	elo	pm	ent	and Debugging
UNIT-III	PIC 16F MICROCONTROLLER SERIES				8 hours
overview of PIC16F84/PIC16 addressing, and Special features of Timer (PWRT), SLEEP, Code	PIC Microcontroller families (8/16 and 32 b architecture and peripherals, Pin diagra F84A Microcontroller, Memory organization special function registers, parallel and serial of PIC16F84A (OSC Selection, RESET - Power Oscillator Start-up Timer (OST), Interrupts, Protection, ID Locations, In-Circuit Serial erview of PIC 16F877/PIC 16F887A.	m on, por r-on W	ar co rts, Ro atc	nd nfigu tim eset hdog	Architecture of uration, memory er and counters. (POR), Power-up g Timer (WDT),
UNIT-IV	ARCHITECTURE OF ARM CORTEX M3 PROCESSORS	AN	ND	M4	8 hours
set, Block diagra Operation mode requirements, en barriers, Low po exceptions and ir	Cortex-M3 and Cortex-M4 processors (Proces m, Memory system, Interrupt and exception su es, Registers, Memory System, features, dianness, bit band operations, access permissi wer design and features, low power application terrupts, exception types and interrupt manager NVIC register, SCB register and other special	ppo sta ons n de nen	rt). ack an eve t, v	Prog m nd at lopm vecto	rammer's model, emory, memory tributes, memory nent, overview of r table, exception

interrupt control, configuration control and auxiliary control registers.

UNIT-V	INSTRUCTION	SETOF	CORTEX	M3	AND	M4	8 hours
	PROCESSORS						

Evolution of ARM ISA, Comparison of the instruction set in ARM Cortex-M Processors, Unified Assembly Language, Addressing modes, Instruction set, Program flow control (branch, conditional branch, conditional execution, and function calls), Multiply accumulate (MAC) instructions, Divide instructions, Memory barrier instructions, Exception-related instructions, Sleep mode-related instructions, Other functions, Introduction to Cortex-M4 processor support for Enhanced DSP instructions, Writing C and Assembly language programs.

Course Outcome: After successful completion of this course students will be able to

CO 1	Explain the Basic knowledge of interfacing with	
	Embedded System.	
CO 2	Analyse the process design of embedded system.	
CO 3	Realize the architecture of PIC 16F Microcontroller	
	Series.	
CO 4	Familiar with the fundamentals of ARM Processor	
	Cortex M3 & M4.	
CO 5	Apply the knowledge of ARM Instruction Set for	
	programming.	

Text books

- 1. Introduction to Embedded Systems, A Cyber physical approach, Edward A. Lee and Senjit A. Seshia.
- 2. Embedded Systems Design: An Introduction to Processes, Tools, and Techniques, by Arnold S. Berger, CMP Books.

Reference Books

- **1.** Designing Embedded Systems with PIC Microcontrollers: Principles and Applications, 2nd Edition, Tim Wilmshurst, Elsevier Publication.
- 2. PIC Microcontroller and Embedded Systems Using Assembly and C for PIC 18 by Muhammad Ali Mazidi, Rolin D. McKinlay and Danny Causey, Pearson Publication.
- **3.** The Definitive Guide to ARM Cortex M3 and Cortex-M4 Processors, Third Edition, Joseph Yiu, Elsevier Publication, 2015.
- 4. ARM Assembly Language Fundamentals and Techniques, William Hohl and Christopher Hinds, CRC Press, 2015.

	M. TECH FIRST YEAR	
Course Code	AMTVL0218 L T	P Credit
Course Title	Real Time Operating System3 0 (
Course Object	ive:	
1	To provide the concept of real time operating system.	
2	To analyse the task scheduling method & I/O system.	
3	To realize the firmware design process.	
4	To familiar with the different types of management system for RTOS.	
5	To explain the concept of RTX.	
Pre-requisites:	Digital System design, Microcontroller.	•
	Course Contents / Syllabus	
UNIT-I	OPEN SOURCE RTOS	8 hours
	Real-time concepts, Hard Real time and Soft Real-time	
	Purpose OS & RTOS, Basic architecture of an RTOS, Schedu	
	1	0.0
-	nmunication, Performance Matric in scheduling mode	· 1
management in I	RTOS environment, Memory management, File systems,	I/O Systems,
Advantage and di	sadvantage of RTOS. POSIX standards, RTOS Issues - Sel	ecting a Real
	ystem, RTOS comparative study. Converting a normal Linux	
	mai basics. Overview of Open source RTOS for Embedded s	systems (Free
RTOS/ Chibios-R	T) and application development	
UNIT-II	Vx WORKS/ FREE RTOS	8 hours
VxWorks/ Free R'	TOS Scheduling and Task Management – Real time schedulin	g, Task
Creation, Intertask	Communication, Pipes, Semaphore, Message Queue, Signals	s, Sockets,
Interrupts. I/O Sys	stems – General Architecture, Device Driver Studies, Driver N	1odule
explanation, Imple	ementation of Device Driver for a peripheral.	
UNIT-III	EMBEDDED FIRMWARE DESIGN AND	10 hours
	DEVELOPMENT	10 nours
Embedded Firmw	are Design Approaches, Super-loopbased approach, Embedd	ed Operating
	roach, Programming in Embedded C, Integrated development	
		cirvitoiinicin
· · · · · · · · · · · · · · · · · · ·	of IDEs for Embedded System Development.	
UNIT-IV	EMBEDDED SYSTEM DESIGN WITH FREE RTOS	6 hours
· · ·	ent, Characteristics of a Queue, Working with Large D	· 1
Management, Que	eues within an Interrupt Service Routine, Critical Sections an	d Suspending
•	source Management, Memory Management.	1 0
UNIT-V	RTX	8 hours
	TX files, RTX task and time management, Simple Time Mana	
	• •	-
•	heme in RTX, Inter-Task Communication, Event, Inter	-
Semaphore, Mail CMSIS-RTOS.	boxes and Messages in RTX, RTX control functions, An	chitecture of
Course Outcon	ne: After successful completion of this course students with	ll be able to

CO 2	Analyse the task scheduling method & I/O system.	
CO 3	Realize the firmware design process.	
CO 4	Familiar with the different types of management system for RTOS.	
CO 5	Explain the concept of RTX.	
Text books		

- 1. VenkateswaranSreekrishnan,"Essential Linux Device Drivers", Ist Kindle edition, Prentice Hall, 2008
- 2. Jonathan W. Valvano, "Real-Time Operating Systems for ARM Cortex-M Microcontrollers" Jonathan Valvano; 4 edition

Reference Books

- 1. Jerry Cooperstein, "Writing Linux Device Drivers: A Guide with Exercises", J. Cooperstein publishers, 2009
- Qing Li and Carolyn Yao,"Real Time Concepts for Embedded Systems" Qing Li, Elsevier ISBN:1578201241 CMP Books © 2003
- **3.** "Using the FreeRTOS Real Time Kernel" From Free RTOS.
- 4. Sam Siewert, "Real-Time Embedded Systems And Components".

	M. TECH FIRST YEAR					
Course Code	e AMTVL0219 LT P Cred					
Course Title	System On Chip (SOC) Design using ARM	300	03			
Course Object	ive:					
1	Study the Architecture of Arm Cortex-M0 Processor.					
2	Describe the AMBA 3 AHB-Lite Bus Architecture	e,				
	VGA, GPIO and 7-Segment UART Peripheral					
3	Learn the Programming of SoC Using C Language.					
4	Compare ARM Cortex-A9 Processor with other processor.					
5	Implement and compare an AXI UART and AXI- Stream Peripheral					
Pre-requisites:	1. Basics of HDL (Verilog /VHDL)					
	2. Basics of Microcontroller Assembley language Progr	amming	5			
	Course Contents / Syllabus					
UNIT-I	INTRODUCTION TO SYSTEM-ON-CHIP	8	hours			
Diff	DESIGN	1				
	g SoCs, CPUs and MCUs, Arm Cortex-M0 Processor A	rchitect				
UNIT-II	PROGRAMMING AN SOC		8 hours			
	Lite Bus Architecture, AHB VGA Peripheral, AHB		1 ·			
	d 7-Segment Peripherals, Interrupt Mechanisms, Pro	grammi	ng an SoC			
Using C Language						
UNIT-III	ARM CORTEX-A9 PROCESSOR		8 hours			
Arm CMSIS and ARM Cortex-A9	Software Drivers, Arm Development Studio, ARMv7-2 Processor	A/R ISA	Overview,			
UNIT-IV	AMBA AXI4		8 hours			
	us Architecture, Design and Implementation of an A	AXI4-Li	te [™] GPIO			
· • •	DDR Memory Controller					
UNIT-V	IMPLEMENTATION OF AN AXI UART AND AXI-STREAM		8 hours			
0 1	mentation of an AXI UART and AXI-Stream Peripheral	l, AXI4-	Stream and			
	HDMI Input Peripheral, System Debugging.	• • •				
	me:After completion of this course students will be a	ble to				
CO 1	Explain Arm Cortex-M0 Processor Architecture.					
CO 2	RecognizeAMBA 3 AHB-Lite Bus Architecture VGA, GPIO and 7-Segment UART Peripheral.	е,				
CO 3	Program SoC Using C Language.					
CO 4	Explain ARM Cortex-A9 Processor.					
CO 5	Design and Implement an AXI UART and AXI- Stream Peripheral.					
Text books	•	I				

- 1. ARM System-on-Chip Architecture by Steve B. Furber
- 2. ARM Assembly Language: Fundamentals and Techniques by William Hohl

3. The Definitive Guide to the ARM Cortex-M0 by Joseph Yiu

Reference Books

- 1. Computer System Design: System-On-Chip Michael J. Flynn and Wayne Luk, Wiely India.
- 2. Modern VLSI Design System on Chip Design Wayne Wolf, Prentice Hall,
- 3. Design of System on a Chip: Devices and Components, Ricardo Reis, Springer
- 4. System on Chip Verification Methodologies and Techniques: Prakash Rashinkar, Peter Paterson and Leena Singh L, Kluwer Academic Publishers

Link:	
Unit 1	https://www.youtube.com/watch?v=PRQXzjTrCJY
	https://www.youtube.com/watch?v=HNbeVvfFKsQ
Unit 2	https://www.youtube.com/watch?v=j2NI4AXRs1Uhttps://www.youtube.com/watch?
	v=4VRtujwa b8&list=PL90187D2B8F5AC28F&index=5
Unit 3	https://www.youtube.com/watch?v=4VRtujwa_b8
Unit 4	https://www.youtube.com/watch?v=mYP5SxDEjrM
	https://www.youtube.com/watch?v=QQY-h0HGHnI
	https://www.youtube.com/watch?v=tEvtb-
	mdJ4s&list=PL90187D2B8F5AC28F&index=16
Unit 5	https://www.youtube.com/watch?v=nbWWMPPC8aE
	https://www.youtube.com/watch?v=MANrmky5DfE